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Abstract
We show that an arbitrary probability distribution can be represented in an
exponential form. In physical contexts, this implies that the equilibrium
distribution of any classical or quantum dynamical system is expressible in
a grand canonical form.

PACS numbers: 05.30.−d, 05.30.Ch, 45.20.Jj

Exponential families of probability distributions play central roles in information theory [1],
statistics [2] and statistical mechanics [3]. Thus, there arises the interesting question of
whether a given system of probability distributions admits a representation in an exponential
form. Recent work has shown that, in the case of finite-dimensional quantum systems, the
time average of the density matrix can be expressed as a grand canonical state, which assumes
an exponential form [4]. Motivated by this result, in the present paper we derive a general
theorem stating that an arbitrary system of discrete or continuous probability densities admits
a representation in the form of an exponential family. This is surprising in that even power-law
distributions are thereby representable in an exponential form.

The paper is organized as follows. We first establish the result for discrete and finite
probability densities. An example of this result has been demonstrated in [4]; the purpose
here is to provide a simpler derivation of the general result. We then proceed to consider the
exponential representation for an arbitrary smooth positive probability density function π(x),
and show that an expression of the form π(x) = exp

(− ∑
k βkx

k
)

is always possible.
1. We begin our analysis in the case of a finite-dimensional discrete probability

distribution. Let H be a random variable assuming distinct values {Ei}i=0,1,...,n with
probabilities {πi}i=0,1,...,n. Then, there is a linearly independent family of n random variables,
including H itself, such that any of these random variables can be expressed as a function of H.
There is a freedom in the choice of the family; here, for simplicity, we choose the powers of
H; thus, our family of independent random variables is just the set {1,H,H 2,H 3, . . . , Hn}.
The linear independence of these random variables, i.e. the fact that the matrix of powers{
Ek

i

}
is nonsnigular, follows from the elementary fact that an nth order polynomial vanishing

at n + 1 distinct points must be identically zero. Moreover, the powers Hm for all m > n are
obviously expressible as linear combinations of powers {Hk}k=0,1,...,n. We define the moments
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{µk}k=0,1,...,n of H by

µk =
n∑

i=0

πiE
k
i , (1)

where µ0 = 1. To establish the existence of an exponential representation for {πi} two further
ingredients are needed; the first is the logarithmic entropy of Shannon and Wiener, defined by

S = −
n∑

i=0

πi ln πi. (2)

The second is the family of variables {βk}k=1,...,n conjugate to the moments {µk} with respect
to the entropy S in the sense that

βk = ∂S

∂µk

. (3)

We then have the following result.

Proposition 1. The family of probabilities {πi}i=0,1,...,n introduced above can be expressed in
the exponential form

πi = exp

(
−

n∑
k=1

βkE
k
i − ln Z(β)

)
, (4)

where Z(β) = ∑n
i=0 exp

(− ∑n
k=1 βkE

k
i

)
.

Since the matrix
{
Ek

i

}
is nonsingular, equations (1) can be solved to express the {πi} as

linear functions of the moments {µk}. That is, we can write

πi =
n∑

j=0

cijµj , (5)

where the constant coefficient matrix {cij } is just the inverse of the matrix
{
Ek

i

}
. Since the

entropy is a concave function of the moments {µk}, the conjugate variables {βk} introduced
in (3) are in one-to-one correspondence with {µk}. In other words, (3) defines a Legendre
transform [5]. Thus, in principle we can express the moments {µk} in terms of the conjugate
variables {βk}, substitute the results in (5) and express the probabilities {πi} in terms of the
variables {βk}. The proposition above states that the result of this nonlinear transform can
be expressed analytically, and is given by an exponential family of distributions.

Proof. Since the row vectors |i〉 = (
E0

i , E
1
i , E

2
i , . . . , E

n
i

)
for i = 0, 1, . . . , n are linearly

independent, we can express the vector − ln πi ∈ Rn+1 in the form

− ln πi =
n∑

k=0

βkE
k
i (6)

for some coefficients {βk}. Substituting (6) in (2), we obtain

S =
n∑

k=0

βkµk, (7)

from which we deduce (3) a posteriori. Finally, solving (6) for πi we obtain the desired form
(5), where the normalization condition for {πi} implies that β0 = ln Z(β). �
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By the above result, the nonlinear transform (3) can be inverted analytically in the form

µk =
n∑

i=0

Ek
i exp

(
−

n∑
l=0

βlE
l
i

)
. (8)

2. An exponential representation can also be derived in the case of an arbitrary smooth
probability density function. In the continuous case, however, the moments of the distribution
need not exist in general. Therefore, some of the preceding constructions involving entropy
and moments must be altered. We state the main result first.

Proposition 2. Let π(x) be a probability density function on the real line such that ln π(x)

is quadratically integrable with respect to the Gaussian measure e−x2
dx. Then π(x) can be

expressed in the exponential form

π(x) = exp

(
−

n∑
k=1

βkx
k − ln Z(β)

)
, (9)

where Z(β) = ∫ ∞
−∞ exp

(− ∑n
k=1 βkx

k
)

dx and where the value of n may be infinite. The
parameters {βk} are uniquely determined by π(x).

The statement of proposition 2 is perhaps surprising, because the representation (9)
applies, for example, to power-law distributions such as the Cauchy distribution 1/[π(1 + x2)]
for which none of the moments exists. The proof goes as follows.

Proof. Since by assumption ln π(x) is quadratically integrable with respect to the Gaussian
measure, one can expand ln π(x) ∈ L2(R, e−x2

dx) in terms of the Hermite polynomials
{Hk(x)}, that is,

ln π(x) = −
∑

k

γkHk(x), (10)

where

γk = − 1√
π2kk!

∫ ∞

−∞
ln π(x)Hk(x) e−x2

dx. (11)

The infinite series on the right side of (10) converges almost everywhere, since the squared
Hilbert space norm

∑
k γ 2

k converges by assumption. Next, define a set of numbers {βk} by
the prescription∑

k

βkx
k =

∑
k

γkHk(x). (12)

Substituting this in (10) and solving the result for π(x), we deduce (9), where the normalization
condition implies that β0 = ln Z.

�

Can we establish a relation analogous to (3) for a general probability density function?
To this end we introduce what might appropriately be called the ‘Gaussian moments’ of π(x)

by defining

µk =
∫ ∞

−∞
xkπ(x) e−x2

dx. (13)

Similarly, we define the ‘Gaussian entropy’ of π(x) by

S = −
∫ ∞

−∞
π(x) ln π(x) e−x2

dx. (14)
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The coefficients {βk} appearing in (9) are then related to the Gaussian moments {µk} defined
by (13) via relation (3), provided we use the Gaussian entropy (14).

The family of density functions for which ln π(x) is quadratically integrable with
respect to the Gaussian measure is fairly large and includes, in particular, all the power-
law distributions. However, this family is not exhaustive. Nevertheless, the representation
(9) can be established for a much wider class of density functions. The idea is to extend the
formulation based on the Gaussian measure into the class S of positive Schwartz functions
(by this we mean functions that have infinite numbers of derivatives, each of which decays
faster than any inverse polynomial). This class forms a convex cone which includes, in
particular, the Gaussian function e−x2

. Let s(x) ∈ S be a positive Schwartz function
such that s(x) ln π(x) is quadratically integrable with respect to the Lebesgue measure. We
then construct orthonormal polynomials {Jk(x)} in L2(R, s2(x)dx) by means of the Gram–
Schmidt procedure. Approximating by integration over a finite interval, we can then apply
the Weierstrass approximation theorem to establish the completeness of the set {Jk(x)}. The
function ln π(x) can therefore be expanded in a form analogous to (10), with almost everywhere
convergence. The coefficients {γk} depend upon the choice of the Schwartz function s(x),
whereas the expansion coefficients {βk} defined in a manner analogous to (12) are basis
independent.

To show that the representation (9) is valid for all smooth density functions we proceed
as follows. First, we observe that since π(x) is nonnegative, [1 + (ln π(x))2]−1 is less than or
equal to one for all x. Therefore, the function f (x) = s(x)/[1 + (ln π(x))2], for any s(x) ∈ S,
decays faster than any inverse polynomial. Thus, for an arbitrary smooth density function π(x),
the logarithm ln π(x) is by construction quadratically integrable in L2(R, f (x)dx). Of course,
the density function could be so perverse that f (x) does not belong to S, i.e. the derivatives
of f (x) need not decay faster than any inverse polynomial. However, the behaviour of these
derivatives is immaterial for our construction, since we merely require that all polynomials
are quadratically integrable with respect to the measure f (x) dx. Consequently, the above
exponential representation is indeed valid for all smooth density functions.

In statistics, the exponential family of distributions is generally defined as the totality of
density functions that admit representations of the form exp

(− ∑n
k=0 βkTk(x)

)
for a set of

functions (sufficient statistics) {Tk(x)}, where n is usually assumed finite. The foregoing result
thus implies that the exponential family of distributions is dense in the totality of probability
distributions. Thus, the study of probability distributions could, in principle, be restricted to
the exponential type. In specific applications, the practicality of this depends upon the density
function π(x) and the choice of the Schwartz function s(x), since the rate of convergence
depends upon these ingredients.

From the physical point of view, the result established here also leads to an interesting
observation concerning equilibrium properties of generic dynamical systems. We note that if a
dynamical system is in equilibrium, then the associated equilibrium distribution is necessarily
an energy distribution, since steady-state solutions to the Liouville equation (or the Heisenberg
equation in the case of a quantum system) are given by functions of the Hamiltonian. Thus, we
conclude that if a dynamical system is in equilibrium, then the relevant equilibrium distribution
is necessarily expressible in a grand canonical form. We emphasize that this result applies
not only to thermal equilibrium, but to any form of equilibrium state of a dynamical system.
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[5] Čencov N N 1982 Statistical Decision Rules and Optimal Inference (Providence, RI: American Mathematical

Society)

http://dx.doi.org/10.1103/PhysRev.106.620

	Acknowledgment
	References

